skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prinz, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Structure editors operate directly on a program’s syntactic tree structure. At first glance, this allows for the exciting possibility that such an editor could enforce correctness properties: programs could be well-formed and sometimes even well-typed by construction. Unfortunately, traditional approaches to structure editing that attempt to rigidly enforce these properties face a seemingly fundamental problem, known in the literature asviscosity. Making changes to existing programs often requires temporarily breaking program structure—but disallowing such changes makes it difficult to edit programs! In this paper, we present a scheme for structure editing which always maintains a valid program structure without sacrificing the fluidity necessary to freely edit programs. Two key pieces help solve this puzzle: first, we develop a novel generalization ofselectionfor tree-based structures that properly generalizes text-based selection and editing, allowing users to freely rearrange pieces of code by cutting and pasting one-hole contexts; second, we type these one-hole contexts with a category oftype diffsand explore the metatheory of the system that arises for maintaining well-typedness systematically. We implement our approach as an editor calledPantograph, and we conduct a study in which we successfully taught students to program with Pantograph and compare their performance against a traditional text editor. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  2. Inductive relations offer a powerful and expressive way of writing program specifications while facilitating compositional reasoning. Their widespread use by proof assistant users has made them a particularly attractive target for proof engineering tools such as QuickChick, a property-based testing tool for Coq which can automatically derive generators for values satisfying an inductive relation. However, while such generators are generally efficient, there is an infrequent yet seemingly inevitable situation where their performance greatly degrades: when multiple inductive relations constrain the same piece of data. In this paper, we introduce an algorithm for merging two such inductively defined properties that share an index. The algorithm finds shared structure between the two relations, and creates a single merged relation that is provably equivalent to the conjunction of the two. We demonstrate, through a series of case studies, that the merged relations can improve the performance of automatic generation by orders of magnitude, as well as simplify mechanized proofs by getting rid of the need for nested induction and tedious low-level book-keeping. 
    more » « less